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Application of Brownian Motion to the
Equation of Kolmogorov-Petrovskii-Piskunov*

H. P. McKEAN

1. Introduction

The content of this paper is a simplified proof of the theorem of
Kolmogorov-Petrovskii-Piskunov [5] to the effect that if u=uf(t, x) is the
solution of'

ou_ 18u
1 ou__cu ., 2
(1) TR A

with initial datum

%) fo={; :f e

and if the number m is the median of u[u(t, m)=1], then
(3) lim u(s, x4 m)=w;(x)

exists and is a “wave” solution of (1) travelling at speed V2, ie., wﬁ(x~~/§ t)
solves (1), or, what is the same,

4 0=iw+V2wis+twh—ws.
Kolmogorov-Petrovskii-PiskunoV proved that m ~ V2t. The estimate
) m=2"t-2""logt, t]o,

will emerge from the present proof. The precise comportment of m is
unknown. The method of proof will make plain that if the datum u(0+,-)=f
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! Kolmogorov-Petrovskii-Piskunov have u—u® in place of u?’-u; the two problems are
related by the substitution u — 1—u.
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satisfies 0=f=1 and if, for fixed 0<b =2,

@) lim e"(1-f(x)]=a
exists, then

3) l}gl u(t, x +ct) = we(x)

exists and is a wave solution of (1) travelling at speed c=1/b+;3b, ie.,
w.(x —ct) solves (1), or, what is the same,

4" O=3w/+cwi+wi—w..

The gap between (3) and (3'), corresponding to data f with tails as in (2') but
for V2 < b <, is left open, though it will be clear that for the analogue of (3)
to hold you will have to travel along with the solution in a style intermediate
between v2 ¢ and m, i.e., you will have to look at u(t, X+v2t=1) with [ 1=
more slowly than V2t—m. A nice problem is to confirm (3) for solutions of
(1) in case the datum (2) is modified by permitting f to increase from 0 to 1
in 0=x =1, say. This has been accomplished by Kanel [2], [3], [4] by the
method of Kolmogorov-Petrovskii-Piskunov [5] for a wide class of equations
du_1d’u

3t 2ax e

in place of (1). The case c(u)=u(l~-u)(u—e), 0<e <3, is of special interest
in neuro-physiology; see Cohen [1] and Nagasawa [6]. The present
method is easily extended (for what it is worth) to cover c(u)=
alb.u*+bsu’+---—u] with u>0 and 0=b,, bs, - - - summing to 1. The case
u(l—u)(u—ce) with a=¢, b=e""'(14+€), bs=—¢"" is not included.

2. Branching

The basic model employed to deal with (1) is a simple branching process,
defined as follows: At time t=0, a single particle commences a standard
Brownian motion x, starting from the origin and continuing for an exponential
holding time T independent of ¥ with P(T>¢)=e . At this moment, the
particle splits in two, the new particles continuing along independent Brown-
ian paths starting from x(T). These particles, in turn, are subject to the
same splitting rule, with the result that, after an elapsed time ¢ >0, you have
n particles located at ¥, -,x, with P(n=k)=e (1—e)*', k=1. The
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connection with (1) comes about through the formula

(6) u(t, ) =E[f(x+z) - flx+x.)],

expressing the solution of (1) in terms of its datum f. The proof is easy. Let
0=f=1 to ensure the existence of the expectation, let u be defined by (6),
and let H, be the Green operator exp {3t 3°/6x°} for du/at =33°u/dx>. Then you
may split the expectation into two pieces, according to whether the original
particle splits at some time T =t or not, and obtain

o
20

u(t, x) = P(T> t)j PLx(t) + x € dy]f(y)
+ 4[]' P(Te dt’)f Plx(t)+xedylu’(t—t,y)
=e 'Hf(x)+ Jne"'H.ruz(t —t',x)dt’.

Now an easy differentiation produces (1) after making the substitution
t'—>t—t' in the integral. The case f=(2) of Kolmogorov-Petrovskii-
Piskunov is of special interest: by a self-evident symmetry,

N u(t, x)=P[r§1§irpx.(t)+x >0]=P[rril§a"x xi(t)<x}.

3. Wave Solutions

The facts as regards solutions of (4') are presented in Kolmogorov-
Petrovskii-Piskunov [S5]; (4') may be presented in the phase plane of w=¢
w'=n by

&=n,
n'=2£(1-¢8)—2cn,

and you have a saddle point at £ =1 =0, with an out-solution issuing into the
first quadrant, and an attractive singular point at § =1, n =0 about which the
solution spirals if 0=c <+v2 but not if ¢=+v2. You require solutions of (4')
with ¢=0, w(—»)=0, w(+x)=1, and 0<w <1 between, so the spiralling
rules out c<\/§, but it is found that the out-solution meets all requirements
for any ¢ =2, providing a bona fide wave solution travelling at that speed;
see Figure 1. The latter is unique up to a translation; it is denoted by w..
The right-hand tail of w. will be wanted later on. The fact is that w. satisfies
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Figure 1

(2') with b=c—+/c*=2 for any ¢ =2, as you will easily check. Notice that
this relation of b to ¢ is inverted by ¢ = 1/b +3b, and that as ¢ runs from V2
to ©, b runs from V2 to 0.

4. Lemma of Kolmogorov-Petrovskii-Piskunov

The main lemma used to prove (3) is as follows. Let u be the solution of
(1) with datum f = (2), let 0<e <1 be fixed, and let X be chosen as a function
of t>0 so as to make u(s, X) =s. It is plain from (6) that X is unique. The
lemma states that u'(t, X) decreases with time. For the proof, fix t >0 and
a>0, and let v(t,x)=u(t+a, x+b)—ult, x) with b =Xx(to+a)—x(t). Then

dv_1dv

ot 2axr TR
with
k=u(t+a,x+b)+u(t,x)—1,
and, by (2),
>0 if x<0,
”(°+’x){<0 if x>0,

Besides, v(te,x0)=0 for xo==x(t,). It is to be proved that v(t,,x)=0 for
x >xo. Then you will have v'(t, xo) =0, and the lemma will follow from that.
Suppose, contrariwise, that v(ts, x,)>0 for some x;>x,. Then (to, x1) must
be connected to (t =0)x (x <0) by a continuous curve C along which v>0, as in
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Vi » X

v>0 X=0 V<0
Figure 2

Figure 2. This is proved by writing v(to, x) by means of Kac’s formula:

v(to, x) = E exp {J;lok[to— t, x(1)] dt}v[to— t, x(t)].

Here, x is a standard Brownian motion starting at t(0)=x running down-
wards as in Figure 2, and 0=t=t, is any Brownian stopping time. The
desired contradiction is now obtained by assuming that the curve C of Figure
2 fails to exist. Fix x =x;. Then, looking backwards from ft,, the first root
t=t, of v[te—1, 2(1)]= 0 defines a stopping time, and with that choice of t, the
expectation vanishes, contradicting v(to, x;)>0. Now fix such a curve C and
use the formula with x =x, and t=the passage time to C. Then the
expectation is positive, while the left-hand side vanishes, and the only way
out is to admit that v(to, x1) > 0 cannot be maintained. The proof is finished.

5. Proof of (3)

The proof of (3) now follows Kolmogorov-Petrovskii-Piskunov [5]
with small improvements. By Section 4, u'(t, X) decreases with time, so from

J» u{t,x+m) de —y
12 u'(t, x)

with m =X for £ =3, you see that

1'1Tr£1 u(t, x +m)=w(x)
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exists; in fact, 0=w =1 is increasing with x, w(0) =3, and the tendency of

u(t, x+m) to w(x) is by decrease (increase) if x >0 (x <0). The only point at
issue is the identification of w as the wave solution for speed 2.

Step 1 is to prove (5): m=2"%-2""logt for t1». By (7),
1—u(t,—x)=P[rp\i’pxi(t)<x]

= E[the number of i =n for which x(t) <x]

=e'P[x(t) <x]

x e*y2/2t
=g’ dy,
-[_w V2t y
as you may verify by use of (6) with f=1+¢ (the indicator of y =x) upon

differentiating with regard to & and putting ¢ = 0. Now a routine estimation
confirms that

e—x/«/’i

2V

1—u(t,x+2"t—=2""log t) =[1+ 0(1)]
for t 1, and step 1 follows from the ensuing under-estimate

1 1
u(t,21-2""logt)z1-—=—o(1)>=.
( gt " (1) 5

Step 2 is to verify that w is non-trivial, i.e., w#3 For x<0, v=
u(t, x + m) satisfies dv/at=0. Now

gv_138°v v
8 =it m 40—,
(8) at 2ax: Moax' v 7Y

SO

0

0=5'(1, 0)+§m'—J’ v(1-v) dx,

and w#1 follows from the fact that 0<<v'(t, 0) is decreasing, lim m'éﬁ, and
v 1w for x<0:

0
(9) j w(l—w)dx=3limv'(t,0)+limim <.
20 t1eo

t1e
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Step 3. Equation (8) implies that, for t { © and any —oc<x <o,

B t+1 , x £ _1—6—22 -Q s ]
o(l)—J: dtLdﬁLdn[28n2+m an+v v

w(x)—3+ xw'(0)

x

+Im(t+1) = m()]x UO (w—1) d§+o(1)]

+ J:dgf(w2—-w) dn+o(1).

The third line is justified by the mean-value theorem, keeping in mind that
m*=0, as is plain from (6). Fix x so as to make J’(w—é) dé#0. You
0

see at once that lim,..[m(t+1)—m(t)]=c exists, and it requires only two
differentiations with regard to x to obtain (4'), proving that w is a (non-
trivial) wave-form. Now c is necessarily at least V2, and to finish the proof,
you have only to notice from (9) that

0
zli_m%m'z'[ w(l—w)dx —3w'(0),

1
V2
and from (4’) that

[}

w(l—w)dx,

0=13w'(0) +3c —J’

whence ¢ =+/2.
A little variation of the proof confirms that

l.iTT T 'm(it+T)—-m()=c

for any T, ie., v2t—m(t) is slowly varying. More information about m
would be desirable. It is easy to check from (7) that if M = maX;=. %:(t), then

3

EM)=m +J: xw'z(x) dx +o(1)

if wy (0)=3. E(M) should be computable, though I do not know how to do
it.
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6. Proof of (3)

The proof of (3') is very easy: w(x—ct) is a solution of (1) only if
w(x)=E[w(x+x+ct) - - wx+x.+ct)].
Now if f satisfies (5), then with a suitable translate of w., you have
w x(1-8)]=f(x)=w[x(1+8)]

for §>0 and x T . But by (3), (5), and (7),
P[r‘n(_ip xn(t)+ct>zlog t]= 1-0(1)

for t1 o, ¢ being at least v2, so, with overwhelming probability, all the

variables under the expectation sign in (6) are far to the right where f is

comparable to w.. The upshot is that
we[x(1=8)]+o0(1) S u(t, x +ct) = w[x(1+8)]+0(1)

for t 1. The proof is finished.

7. A Martingale

The martingale

3(t) =et Z e—bx'(n—b%n
i=1
is closely related to Section 6. Fix ¢ =1/b+3b. Then the expectation
u= E[e-s(n)]= E[efb(x|(t)+ct e e~b(1,,(:)+c:)]
is of the form (6) with x =0 and f=exp{—e ™}, and if b=42, you have

1'12“1 u=w/(0).

But also lim,Tma(!) exists by the martingale convergence theorem, and this
fact gives rise to an integral formula for the wave-form:

we(x)=E exp {—lim 3(t)e"”‘} = j e dP[lim 31 < a] .
tf e 0 theo
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For b>+/2, the limit also exists, but now lim,;« u =1, i.e., P[lim,; . 3(t)=0]=
1, since, in the opposite case, w(x)=E exp {-lim;« 3(t)e'b‘} would be a
wave-form with tail 1—w(x)=o0[e *], and no such wave-form exists.
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