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Application of Brownian Motion to the 
Equation of Kolmogorov-Petrovskii-Piskunov” 

H. P. McKEAN 

1. Introduction 

The content of this paper is a simplified proof of the theorem of 
Kolmogorov-Petrovskii-Piskunov [5 ]  to the effect that if u = u(t, x) is  the 
solution of ’  

with initial datum 

and if the number m is the median of u[u(t, m) =;I, then 

lim u(t, x + m) = w J ~ ( x )  

exists a n d  i s  a “waue” solution of (1) travelling a t  speed h, i.e., w&(x -& t )  
solves (l) ,  or, what is the same, 

(3) I t -  

(4) o = ; w ~ + & w ~ + w $ - w f i .  

Kolmogorov-Petrovskii-Piskunov’ proved that m - & t. The estimate 

( 5 )  5 2l/*t - 2-3/2 log t , t t m ,  

will emerge from the present proof. The precise comportment of m is 
unknown. The method of proof will make plain that if the da tum u(O+, .) = f 
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satisfies O s f s  1 and i f ,  for fixed O <  b s & ,  

lim e""[-f(x)]= a 
x t- 

exists, then 

lim u(t, x + ct) = w,(x) 
I t -  

(3') 

exists and is a wave soZution of (1) travelling at speed c = l i b  +ib,  i.e., 
w,(x - c t )  solves (l), or, what is the same, 

0 = fw': + cw: + w f  - wc . (4') 

The gap between (3) and (37, corresponding to data f with tails as in (2')  but 
for &< b (00, is left open, though it will be clear that for the analogue of (3') 
to hold you will have to travel along with the solution in a style intermediate 
between & t and rn, i.e., you will have to look at u(t,  x +fi t - 1) with 1 t 00 

more slowly than & t - rn. A nice problem is to confirm (3) for solutions of 
(1) in case the datum ( 2 )  is modified by permitting f to increase from 0 to 1 
in 0 S x 5 1,  say. This has been accomplished by Kanel [2], [3], [4] by the 
method of Kolmogorov-Petrovskii-Piskunov [5 ]  for a wide class of equations 

in place of (1). The case c ( u ) = u ( ~ - u ) ( u - E ) ,  O<E<:, is of special interest 
in neuro-physiology; see a h e n  [l] and Nagasawa [6]. The present 
method is easily extended (for what it is worth) to cover c ( u ) =  
a [ b 2 u 2 + b 3 u 3 + . . . - u ]  with u > O a n d O ~ b 2 , b 3 , . . . s u m m i n g t o  1. Thecase 
u(1- u)(u - E )  with a = E, b2 = ~ - l ( l +  E), b3 = -&-I  is not included. 

2. Branching 

The basic model employed to deal with (1) is a simple branching process, 
defined as follows: At time t = 0 ,  a single particle commences a standard 
Brownian motion x ,  starting from the origin and continuing for an exponential 
holding time T independent of x with P ( T > t ) = e - ' .  At this moment, the 
particle splits in two, the new particles continuing along independent Brown- 
ian paths starting from x(T). These particles, in turn, are subject to the 
same splitting rule, with the result that, after an elapsed time t > O ,  you have 
n particles located at x,, - * , x, with P(n = k )  = C ( 1 -  e-')k-l, k 2 1. The 
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connection with (1) comes about through the formula 

expressing the solution of (1) in terms of its datum f. The proof is easy. Let 
OSfS 1 to ensure the existence of the expectation, let u be defined by (6), 
and let HI be the Green operator exp { f t  az/axz} for aulat = fa'u/ax'. Then you 
may split the expectation into two pieces, according to whether the original 
particle splits at some time T 9 t or not, and obtain 

u(t, x)  = P ( T >  t )  P [ x ( t )  + x E dy]f(y) I-: 
+ P(TE dt')\-l P [ x ( t ' ) + x  E dy]u2(t - t ' ,  y) 6' 

= e-'H,f(x) + e-"H,.u2(t - t ' ,  x)  dt' . 

Now an easy differentiation produces (1) after making the substitution 
t '+  t - t ' in the integral. The case f =  (2) of Kolmogorov-Petrovskii- 
Piskunov is of special interest: by a self-evident symmetry, 

(7) 

3. Wave Solutions 

The facts as regards solutions of (4') are presented in Kolmogorov- 
Petrovskii-Piskunov [S]; (4') may be presented in the phase plane of w = 6, 
w ' = q  by 

5 ' =  7 ,  

q' = 25(1- 5 ) - 2 c q ,  

and you have a saddle point at 5 = q = 0, with an out-solution issuing into the 
first quadrant, and an attractive singular point at 5 = 1, q = 0 about which the 
solution spirals if 0 S c <h but not if c Z A. You require solutions of (4') 
with c 2 0, w(-m) = 0 ,  w(+m) = 1, and 0 < w < 1 between, so the spiralling 
rules out c <A, but it is found that the out-solution meets all requirements 
for any c 2 h, providing a bona fide wave solution travelling at that speed; 
see Figure 1. The latter is unique up to a translation; it is denoted by w,. 
The right-hand tail of we will be wanted later on. The fact is that w, satisfies 
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Figure 1 

(2') with b = c -- for any c 2 A, as you will easily check. Notice that 
this relation of b to c is inverted by c = l / b  +ib,  and that as c runs from f i  
to w, b runs from f i  to 0. 

4. Lemma of Kolmogorov-Petrovskii-Piskunov 

The main lemma used to prove (3) is as follows. Let u be the solution of 
(1) with datum f = (2) ,  let O <  E < 1 be fixed, and let X be chosen as a function 
of t > O  so as to make u(t,  X) = E .  It is plain from (6) that X is unique. The 
lemma states that u'(t, 2 )  decreases with time. For the proof, fix to>O and 
a > 0, and let u ( t ,  x) = u( t  + a, x + b )  - u(t, x) with b = %(to + a)  - ? ( t o ) .  Then 

with 

k = u( t  + a, x + b) + u(t, X )  - 1 , 

Besides, u ( t o ,  xo)=O for x o = X ( t o ) .  It is to be proved that u ( t o ,  x ) S O  for 
x > xo.  Then you will have u ' ( t o ,  xo) d 0, and the lemma will follow from that. 
Suppose, contrariwise, that u( to ,  x , )>O for some x1 >xu.  Then ( t o ,  XI) must 
be connected to ( t  = 0) x (x < 0) by a continuous curue C along which u > 0, as in 
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t +OX, 

+ I  

x=o veo 
Figure 2 

Figure 2. This is proved by writing u ( t o , x )  by means of Kac's formula: 

Here, x is a standard Brownian motion starting at t(O)=x running down- 
wards as in Figure 2, and O S t S  to is any Brownian stopping time. The 
desired contradiction is now obtained by assuming that the curve C of Figure 
2 fails to' exist. Fix x =xl .  Then, looking backwards from to, the first root 
t d to of u[ to -  t, x(t)] = 0 defines a stopping time, and with that choice of t,  the 
expectation vanishes, contradicting u(to, x l )>O.  Now fix such a curve C and 
use the formula with x = x o  and t= the  passage time to C. Then the 
expectation is positive, while the left-hand side vanishes, and the only way 
out is to admit that v( to ,  xl) > 0 cannot be maintained. The proof is finished. 

5. Proof of (3) 

with small improvements. By Section 4, u'(t, X) decreases with time, so from 
The proof of (3) now follows Kolmogorov-Petrovskii-Piskunov [5] 

with m = Z for E = f, you see that 

lim u(t,  x + m) = w ( x )  
tt- 



328 H. P. MCKEAN 

exists; in fact, 0 5  w 5 1 is increasing with x, w(0) = t ,  and the tendency of 
u(t, x + m )  to w(x) is by decrease (increase) if x > O  (x <O) .  The only point at 
issue is the identification of w as the wave solution for speed A. 

m S 2’12t - T 3 1 2  log t Step  1 is to prove (5): for t t m. By (7), 

1 1 - u(t, - x )  = P[min x, ( t )  < x 

d E[the number of i 5 n for which x, (t) < x]  

= e t P [ x ( t )  < x] 
II e - y 2 / 2 1  

= e‘  I, G dy ’ 

as you may verify by use of (6) with f =  1+ E (the indicator of y S x )  upon 
differentiating with regard to E and putting E = 0. Now a routine estimation 
confirms that 

-4J5 
1 - u(t ,  x +2lI2t - 2-”2 log t )  = [1+ 0(1)]- 

2 G  

for t t w, and step 1 follows from the ensuing under-estimate 

1 o ( l ) > - .  1 
u(t,  2’j2 t - 2 312 log t )  L 1 

2& 2 

Step 2 is to verify that w is non-trivial, i.e., ~ $ 4 .  For x < O ,  IJ = 
u(t, x + rn) satisfies &/at 2 0. Now 

so 

and w + f  follows from the fact that O<v’(t, 0) is decreasing, lim rn.S&, and 
v t w for x<O:  

W( 1 - w) dx S f lim u’(t, 0) + lirn fm. <a. 
t t -  t t -  

(9) 
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Step 3. Equation (8) impIies that, for t m and any -m<x <m, 

=fw(x)-$+xw‘(O)  

+ [m(t + 1) - r n ( t ) ]  x [ Iox(w - f) d5 + o(  l)] 

f I,’dSI’(.- w )  dq +o( l )  

The third line is justified by the mean-value theorem, keeping in mind that 

m’ZO, as is plain from (6). Fix x so as to make (w-4) d(f0 .  You 

see at once that l im,p[m(t+l ) -m( t ) ]=c  exists, and it requires only two 
differentiations with regard to x to obtain (4’), proving that w is a (non- 
trivial) wave-form. Now c is necessarily at least A, and to finish the proof, 
you have only to notice from (9) that 

6’ 

w ( l - w ) d x - ; w ’ ( O ) ,  

and from (4’) that 

0 =fw’(O) +Ic - ~ ( 1 -  W )  d x  , s: 
whence c = 4. 

A little variation of the proof confirms that 

lim T-’rn(t + T)-m(t )=c  
11-  

for any T, i.e., d‘? t -m(t)  is slowly varying. More information about rn 
would be desirable. It is easy to check from (7) that if M =  max,5,x,(t), then 

E ( M )  = m + j-: xw;Z(x) dx + o(1) 

if w&(O)=f. E(M) should be computable, though I do not know how to do 
it. 
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6. Proof of (3’) 

The proof of (3’) is very easy: w ( x - c t )  is a solution of (1) only if 

w ( x )  = E [ w ( x  + X I  + c t )  . . . W ( X  +& + c t ) ] .  

Now if f satisfies ( 5 ) ,  then with a suitable translate of w e ,  you have 

w , [ x (  1 - S)] 5 f (x) 5 w,[x (1 + S)] 

for 6 > 0 and x t m. But by (3 ) ,  ( 5 ) ,  and (7), 

= l - o ( l )  1 
for t ?@J, c being at least &, so, with overwhelming prc-ability, al. the 
variables under the expectation sign in (6)  are far to the right where f is 
comparable to w , .  The upshot is that 

w,[x(  1 - ti)] + o(1) s u(t, x + c t )  5 w c [ x ( l  + S ) ] +  o(  1) 

for t t m. The proof is finished. 

7. A Martingale 

The martingale 

is closely related to Section 6. Fix c = l / b  +fb. Then the expectation 

u = E[e-3(‘)] = E[e-b(r~(*)+ct . . . -b ( Idt )+c t ) ]  

is of the form (6)  with x = 0 and f = exp {-CbX}, and if b 5 h, you have 

But also lim,.1,3(t) exists by the martingale convergence theorem, and this 
fact gives rise to an integral formula for the wave-form: 
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For b >a, the limit also exists, but now lim, a u = 1, i.e., P[lim, a j ( t )  = 01 = 
1, since, in the opposite case, w ( x )  = E exp {-lim,? j ( t ) C b X }  would be a 
wave-form with tail 1 - w ( x )  = ~ [ e - ~ ” ] ,  and no such wave-form exists. 
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