Classes galoisiennes réalisables par la racine carrée de la codifférente d'extensions non abéliennes

Bouchaïb Sodaïgui Université Polytechnique Hauts-de-France Laboratoire Ceramaths, FR CNRS 2037 Le Mont Houy, 59313 Valenciennes Cedex 9, France E-mail: bouchaib.sodaigui@uphf.fr

Résumé

Soient k un corps de nombres et O_k son anneau d'entiers. Soit Γ un groupe fini d'ordre impair. Soient \mathcal{M} un O_k -ordre maximal dans l'algèbre semi-simple $k[\Gamma]$ contenant $O_k[\Gamma]$. Soit $Cl(O_k[\Gamma])$ (resp. $Cl(\mathcal{M})$) le groupe des classes des $O_k[\Gamma]$ (resp. \mathcal{M})-modules localement libres. On désigne par $\mathcal{R}(\mathcal{A}, O_k[\Gamma])$ (resp. $\mathcal{R}(\mathcal{A}, \mathcal{M})$) l'ensemble des classes c de $Cl(O_k[\Gamma])$ (resp. $Cl(\mathcal{M})$) telles qu'il existe une extension N/k modérément ramifiée, à groupe de Galois isomorphe à Γ , avec $[\mathcal{A}_{N/k}] = c$ (resp. $[\mathcal{M} \otimes_{O_k[\Gamma]} \mathcal{A}_{N/k}] = c$), où $\mathcal{A}_{N/k}$ est la racine carrée de la codifférente de N/k et [M] désigne la classe de M. Nous dirons que $\mathcal{R}(\mathcal{A}, O_k[\Gamma])$ (resp. $\mathcal{R}(\mathcal{A}, \mathcal{M})$) est l'ensemble des classes galoisiennes réalisables par la racine carrée de la codifférente. Lorsque Γ est abélien, il est bien connu que ces deux sous-ensembles sont des sousgroupes par l'intermédiaire d'une description non explicite inspirée par des travaux sur les classes réalisables par des annneaux d'entiers ; le problème de leurs structures dans le cas non abélien est ouvert. Dans cet exposé, lorsque Γ est d'ordre un nombre premier l, sous une certaine hypothèse on décrit explicitement $\mathcal{R}(\mathcal{A}, \mathcal{M})$ par un idéal de Stickelberger. Ensuite, on applique ce résultat au cas où Γ est un groupe métacyclique non abélien d'ordre lm, où m est un entier impair ; sous certaines hypothèses, on définit un sous-ensemble de $Cl(\mathcal{M})$ (qu'on peut interpreter à l'aide de la notion d'extensions domestiques) au moyen de deux idéaux de Stickelberger et on montre qu'il est un sous-groupe de $Cl(\mathcal{M})$ contenu dans $\mathcal{R}(\mathcal{A}, \mathcal{M})$.